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A single-atom “thermodynamic limit” in QED:
quantum criticality and complementarity

Persisting photon blockade for growing nsc = [g/(2κ)]2 in:
(i) single trajectories, (ii) ensemble averages, and (iii) quasiprobabilities

3 / 38



Motivation

Particle statistics in a resonant environment:

Bosons and fermions generally behave in different ways because
only fermions obey the Pauli exclusion principle, which states that
no two fermions may occupy the same quantum state.

Bosons are actually attracted to the same state via the process of
stimulated emission. Under some conditions, however, analogies
between bosonic and fermionic behavior arise. One such condition is
photon blockade.

Out-of-equilibrium transitions and the concept of a
“thermodynamic limit” in the absence of a conserved particle
number.

Rethink of the physical behavior influenced in a fundamental way by
inputs and outputs where internal coupling is strong enough to
produce energy-level splittings in excess of the level widths. 1

1see H. J. Carmichael, Breakdown of Photon Blockade: A Dissipative Quantum
Phase Transition in Zero Dimensions, Phys. Rev. X 5 (2015).
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Brief Outline of Concepts and Tools

The Jaynes-Cummings (JC) model and the
√
n oscillator:

I. Resonant excitation (absorptive bistability, spontaneous
dressed-state polarization)
II. Off-resonance excitation (multiphoton resonances, collapse of
photon blockade via complex amplitude bistability).

Mean-field results for amplitude and phase bistability, Maxwell-Bloch
equations, neoclassical equations.

Dissipative quantum phase transitions and the two associated
“thermodynamic limits”:

I. Weak-coupling limit (laser)
II. Strong-coupling limit (cavity QED, circuit QED)

The distinct role of quantum fluctuations and the JC nonlinearity:
quantum vs. semiclassical picture, and quantum trajectories.
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A scattering scenario in quantum optics
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Resonance fluorescence: an open quantum system

Master equation: Source – dynamics of the atom

ρ̇ =− i 1
2ωA[σz , ρ] + i(Ω/2)[e−iωAtσ+ + e iωAtσ−, ρ]

+
γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−).

(1)

Scattered field: Detection – reservoir operators:

Ê
(+)

s (r , t) = i
1

2ε0V
e−iωAt

∑
k,λ

ωk êk,λ(êk,λ · d 12)e ik·(r−rA)

×
∫ t

0

dt ′σ̃−(t ′)e i(ωk−ωA)(t′−t).
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A scattering scenario in quantum optics

8 / 38



Fokker–Planck equation for the laser: quantum probability
within a classical stochastic description

Glauber-Sudarshan Representation: diagonal expansion in coherent states

ρL(t) =

∫ ∞
−∞

d2αPL(α, α∗, t) |α〉〈α|, (3)

with PL a positive-definite function obeyinga

κ−1 ∂PL

∂t
=

[(
∂

∂α
α +

∂

∂α∗
α∗
)(

1− ℘− ℘ |α|
2

nsat

)
+ 2nspon

∂2

∂α∂α∗

]
PL.

(4)

aF. Haake and M. Lewenstein, Phys. Rev. A 27 (1983); H.J.Carmichael and
Changsuk Noh, Physica E 42 (2010)

Equivalent Ito stochastic differential equation

dαt = −καt

(
1− ℘− ℘ |αt |2

nsat

)
dt +

√
2κnspon dZ , (5)

where dZ is a complex Wiener increment satisfying
dZ dZ = dZ∗ dZ∗ = 0 and dZ∗ dZ = dt.

Functional integral over αt : PL(α, α∗, t) =
∫
dαtPL(αt)δ

(2)(α− αt).
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Realizations of a classical stochastic process

Sample paths in the complex
plane, αt = xt + iyt , from
numerical simulation of Eq. (3):
(a) below threshold,
1− ℘ = 10−2; (b) and (c) above
threshold, ℘− 1 = 10−3; for
nsat = 108 and nspon = 1.

Mean amplitude scales as
|αt | =

√
nsat(℘− 1).

The paths plotted in frames (b)
and (c) of play out over 106

cavity lifetimes, yet the phase
has still not diffused a full 2π.

Transition from g (2)(τ) = 1 + exp[−2κ(1− ℘)|τ |] to
g (2)(τ) = 1 +

nspon

nsat(℘−1)2 exp[−2κ(1− ℘)|τ |] across threshold2.

2H.J.Carmichael and Changsuk Noh, Physica E 42 (2010).
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Laser operation: some particulars of a weak-coupling limit

Effective two-level model3 for the laser medium (g =
√

ωCd2

2~ε0VQ
):

nsat = nwc =
γh(γ↑ + γ↓)

8g2
,

℘ =
2g2

γhκ
(N0

2 − N0
1 ) = 2C

γ↑ − γ↓
γ↑ + γ↓

.

The strength of the fluctuations is determined by two intensive
parameters: the thermal photon number

n =
[
e~ωC/(kBT ) − 1

]−1

, (7)

and the spontaneous emission photon number

nspon = C + 1
2℘ =

2Ng2

γhκ

γ↑
γ↑ + γ↓

. For γ↑ � γ↓, nspon ≈ ℘. (8)

Weak-coupling limit: g2 → 0, N0
2 →∞, while C ≈ N0

2g
2/(γhκ) = const.

3H. J. Carmichael, Statistical Methods in Quantum Optics, 1, Springer 1999
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Master Equation, Wigner and Q representations

The Master Equation describing the evolution of ρ for a cavity mode
coupled to a two-level atom with strength g in the presence of
dissipation (at rates 2κ for the cavity photons and γ, γφ for the
atom) is:

ρ̇ =− (i/~)[HJC , ρ] + κ[n(ωc) + 1]L{a, ρ}+ κn(ωc)L{a†, ρ}+
+ (γ/2)[n(ωA) + 1]L{σ−, ρ}+ (γ/2)n(ωA)L{σ+, ρ}+
+ (γφ/2)L{σz , ρ},

(9)
where L{B, ρ} = 2BρB† − B†Bρ− ρB†B and n(ωc) is the photon
number of a bath oscillator in thermal equilibrium (temperature T )
and frequency ωC . Strong-coupling regime: g � 2κ, γ.
Characteristic functions:

χA(z , z∗) = tr(ρe izae iz
∗a†) and χS(z , z∗) = tr(ρe iza+iz∗a†). (10)

Their Fourier transforms

Q,W (α, α∗) =

∫
χA,S(z , z∗)e−iz

∗α∗e−izα d2z , (11)

are quasi-probability density functions.
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The driven Jaynes-Cummings model

HJC = 1
2~ωAσz + ~ωca

†a + i~g
(
a†σ− − aσ+

)
+ ~

(
εde
−iωd ta† + ε∗de

iωd ta
)
.

(12)

Two competing interactions: the JC interaction between the atom
and the cavity mode, and the interaction of the cavity mode with
the external driving field. 4

In resonance fluorescence the bare atomic levels split as a result of
the atom-field interaction:

Hres.fl. = 1
2~ωAσz + ~ωca

†a + ~
(
λaσ+ + λ∗a†σ−

)
(13)

The new energies of the dressed states are

En,± =
(
n + 1

2

)
~ωA ±

√
n + 1 ~ |λ| . (14)

With driving we expect ‘dressing’ of the ‘dressed states’. The
threshold for spontaneous polarization occurs at 2 |εd | = g .

4H. J. Carmichael, Statistical Methods in Quantum Optics, 2, Springer 2008
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Resonance – Quasi-energy spectrum I.

Quasi-energies are associated with a time-independent Schrödinger
equation with Hamiltonian:

H̃ = i~g
(
a†σ− − aσ+

)
+ ~

(
εda
† + ε∗da

)
(15)

For strong driving fields (2 |εd | /g � 1) the roles of the interactions
are reversed: the JC interaction becomes the perturbation.

Potential energy ~εd(a† + a) proportional to the position of a
harmonic oscillator. We anticipate a continuous spectrum with a
transition located at 2 |εd | = g where the quasi-energy spectrum
collapses. That point is identified as the organizer of a
second-order dissipative quantum phase transition in the presence of
quantum fluctuations.
With drive and cavity detuning, the large mean photon number is

nss =
|εd |2

κ2 + [(ωd − ωc)∓ g/(2
√
nss)]2

. (16)
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Resonance – Quasi-energy spectrum II.

Define a squeeze parameter (think of the parametric oscillator) a

e−2r ≡
√

1− (2 |εd | /g)2
. (17)

Quasi-energies En,U(L) = ±√n ~ge−3r .

Spectrum (m − 1
2 )ωA + En,±/~, m = 0, 1, 2, ... below threshold.

At threshold, the discrete quasi-energy levels merge into a
continuum. Steady states are formed from superpositions of atomic
states multiplied by squeezed and displaced Fock states. Above
threshold, normalizable states do not exist.

aP. Alsing et al., Dynamic Stark effect for the Jaynes-Cummings system, Phys. Rev.
A 45 (1992).
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Resonance —The two ladders of eigenstates I.

5

5H. J. Carmichael, Statistical Methods in Quantum Optics 2, 2008
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Resonance – The two ladders of eigenstates II.

Two quasi-annihilation operators U and L for two ladders beginning
from the same ground state.

The JC Hamiltonian can be written as (ωA = ωc = ωd):

HS + 1
2~ωA = 0 |G 〉 〈G |+

(
~ωAU

†U + ~g
√
U†U

)
+

+
(
~ωAL

†L− ~g
√
L†L
)

+ ~
(
εda
† + ε∗da

)
= H+√

n
+ H−√

n
.

(18)

Two
√
n anharmonic oscillators driven away from resonance.

For a small cavity damping we form the Master Equation
(U)-oscillator

ρ̇ =
1

i~

[
H+√

n
, ρ
]

+ κ
(
2U† ρU − U†Uρ− ρU†U

)
(19)
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Resonance – Two limits of the
√
n oscillator

Weak excitation limit (
√
n oscillator):

〈
a†a
〉
ss
≈
∣∣∣∣ εd
κ+ ig

∣∣∣∣2 ≈ ( |εd |g
)2

. (20)

Strong excitation, quasi-resonant, with detuning g/(2
√
n) (for the√

n oscillator):

〈
a†a
〉
ss
≈
∣∣∣∣∣ εd

κ+ ig/(2
√
〈a†a〉ss)

∣∣∣∣∣
2

≈
( |εd |

κ

)2

−
( g

2κ

)2

. (21)

Mean-field equations predict above threshold – full JC oscillator:

|αss|2 =

( |εd |
κ

)2
[

1−
(

g

2 |εd |

)2
]
. (22)
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Photon counting – A damped coherent state I.

Constituents of the trajectory

The damped resonator is described by the jump operator and
non-Hermitian Hamiltonian, J =

√
2κ a, H = −i~κa†a. We adopt the

ansatz
|ψREC(t)〉 = A(t) |α(t)〉 , (23)

with |α(t)〉 = exp[α(t)a† − α∗(t)a] |0〉. The norm
〈ψREC(t)|ψREC(t)〉 = |A(t)|2 is the record probability density.

Record of n counts up to time t: jumps at the ordered times t1, t2, . . . , tn

A jump at tk preserves the ansatz: A(tk)→
√

2κα(tk)A(tk).
The evolution between jumps obeys:

d |ψREC(t)〉
dt

= −(κa†a) |ψREC(t)〉 . (24)

This also preserves the ansatz provided that

dα(t)

dt
= −κα(t) and

1

A(t)

dA(t)

dt
=

dα∗(t)

dt
α(t) =

d

dt

(
1
2 |α(t)|2

)
,
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Photon counting – A damped coherent state II.

Expression for the conditional state

For tk ≤ t ≤ tk+1: α(t) = α exp(−κt) and
A(t) = A(tk) exp[− 1

2 |α|2(e−2κtk − e−2κt)]. We can then construct:

|ψREC(t)〉 =(
√

2κ|α|2e−2κtn) . . . (
√

2κ|α|2e−2κt1 )

× exp[− 1
2 |α|2(1− e−2κt)] |αe−κt〉 ,

(25)

and find the probability density

〈ψREC(t)|ψREC(t)〉 =(2κ|α|2e−2κtn) . . . (2κ|α|2e−2κt1 )

× exp[−|α|2(1− e−2κt)].
(26)

Probability for n counts in time T

By summing (integrating) over all possible times we finda:

P(n,T ) =
[|α|2(1− e−2κT )]n

n!
exp[−|α|2(1− e−2κT )]. (27)

aH.J.Carmichael, Quantum Open Systems, Ch. 4 in Strong Light-Matter Coupling:
From Atoms to Solid-State Systems, World Scientific Publishing (2013). 20 / 38



Resonance – Forming a quantum trajectory from jumps I.

The state of the cavity field obeys the stochastic equation:

dα̃

dt
= −[κ+ iεg/(2|α̃|)]α̃ + iεd . (28)

ε = ±1 represents the random phase switching
instigated by a single quantum event.

At strong excitation the JC interaction term gives rise to the

operator dz ≈ |u〉〈u| − |l〉〈l |, with |u, l〉 = [
√

2
2 (|+〉 ± i |−〉)]. This in

turn features in the coupling term6

ρ̇qα = −ig/(2
√
n) 1

2

(
dz [a†a, ρ] + [a†a, ρ]dz

)
. (29)

Performing the secular transformation yields the “switching terms”

...+ γ/4 (d−ρ̃d+ + d+ρ̃d−) + ... (30)

with d+ = |u〉 〈l | and d− = |l〉 〈u|
These terms couple the U and L paths according to the system size.

6P. Alsing and H. J. Carmichael, Quantum Opt. 3 (1991).
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Resonance - Forming a quantum trajectory from jumps II.

Emission times: t1, t2, ...tN between which there is coherent
evolution with a non-Hermitian Hamiltonian.
S: collapse operator and e(L−S)(tj−tj−1): the propagator

ρ̃c(t) =


e(L−S)(t−tj−1)ρ̃c(tj−1)

tr[e(L−S)(t−tj−1)ρ̃c(tj−1)]
, tj−1 ≤ t < tj

Se(L−S)(t−tj−1)ρ̃c(tj−1)

tr[Se(L−S)(t−tj−1)ρ̃c(tj−1)]
, t = tj .

(31)

with S O = (γ/4) (d−Od+ + d+Od−) and
(L − S)O determines evolution between switching events:
independent driven harmonic oscillators along either path.

Dyson expansion for the density operator:

ρ(t) =
∞∑
k=0

∫ t

t0

dtk

∫ tk

t0

dtk−1 · · ·
∫ t2

t0

dt1 exp[(L − S)(t − tk))] · · ·

S exp[(L − S)(tk − tk−1))]S exp[(L − S)(t2 − t1))] · · ·
S exp[(L − S)(t1 − t0))]ρ(t0).

(32)
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Resonance – Decoherence and ladder switching

a
∣∣En, (U,L)

〉
=

√
n +
√
n + 1

2

∣∣En−1, (U,L)

〉
+

√
n −
√
n + 1

2

∣∣En−1, (L,U)

〉
(33)

σ−
∣∣En, (U,L)

〉
= 1

2 |En,U〉+ 1
2 |En, L〉 . (34)

(i.e. 50% probability of ladder switch). For γ/κ = 0.1, 1, 10, 100 7.

7H. J. Carmichael, Phys. Rev. X 5, 2015 (Fig. 7)
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Resonance – Spontaneous dressed-state polarization

For slowly-varying operators with 〈ã〉 = e iωC t 〈a〉, we define 8:
Cavity field:

x + iy ≡ N−1/2[ie−iarg(εd ) 〈ã〉]. (35)

Collective Bloch vector:

m ≡ N−1
{

2Re[ie−iarg(εd ) 〈J̃−〉]x̂ + 2Im[ie−iarg(εd ) 〈J̃−〉]ŷ + 〈Jz〉 ẑ
}
(36)

Neoclassical equations [γ/(2κ) = 0]:

ẋ = −κx + 1
2

√
N gmx + |εd |/

√
N,

ẏ = −κy + 1
2

√
N gmy ,

(37)

giving:
ṁ = B×m, m ·m = 1, (38)

with B ≡ 2
√
N g(−y , x , 0): dynamically changing magnetic field.

Above threshold, mss and Bss adjust their values so that the pair either
align or anti-align with each other.

8P. Alsing and H. J. Carmichael, Quantum Opt. 3 (1991).
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Scaling in the strong-coupling “thermodynamic limit”

Solving in the presence of detuning ∆ω = ωd − ωC yields

αss = −iεd
[
κ− i

(
∆ω ∓ sgn(∆ω)

g2√
(∆ω)2 + 4g2|αss|2

)]−1

.

(39)
Steady state equation with scale parameter nsc = g2/(4κ2).

|αss|2
nsc

[
|αss|2
nsc

+ 1−
(

2|εd |
g

)2
]

= 0. (40)

Otherwise similar to the laser state equation

nss

(
nss
nsat

+ 1− ℘
)

= 0 (41)

If the drive is tuned to the n-photon resonance:

n~ωd = n~ωc ∓
√
n ~g , then (42)

En+1,(U,L) − En,(U,L) − ~ωd ≈ ∓
√

nsc

n
~κ. (43)

The regime of photon blockade does not collapse as nsc →∞. 25 / 38



Photon blockade in the strong-coupling limit

Persistence of photon blockade with growing nsc (for |∆ω| ∼ g) 9

Quantum fluctuations produce a pronounced disagreement with the
mean-field predictions as nsc →∞.

9Th. K. M, Phys. Rev. A 100 (2019).
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Monitoring coherence in photon blockade I.

Two-photon resonance (|∆ω| ≈ g/
√

2) with εd/g � 1 and γ = 2κ� g :

|ξ1〉

|ξ3〉

|ξ2〉

|ξ0〉

Γ32

Γ31

Γ

Γ

Ω

|ξ0〉 ≡ |0,−〉 ,

|ξ1〉 ≡
1√
2

(|1,−〉 − |0,+〉),

|ξ2〉 ≡
1√
2

(|1,−〉+ |0,+〉),

|ξ3〉 ≡
1√
2

(|2,−〉 − |1,+〉).

Γ32 + Γ31 = 2Γ = 2γ, Ω ≈ 2
√

2
ε2
d

g .

dρ

dt
= Lρ ≡ −i [H̃eff , ρ] + Γ32D[|ξ2〉〈ξ3|](ρ)

+ Γ31D[|ξ1〉〈ξ3|](ρ) + ΓD[|ξ0〉〈ξ1|](ρ) + ΓD[|ξ0〉〈ξ2|](ρ),
(45)

H̃eff ≡
3∑

k=0

Ẽk |ξk〉〈ξk |+ ~Ω(e2iωd t |ξ0〉〈ξ3|+ e−2iωd t |ξ3〉〈ξ0|). (46)
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Monitoring coherence in photon blockade II.

A quantum beat (freq. ≈ 2g) is superimposed on top of a semiclassical
Rabi oscillation (freq. ≈ 2Ω); ringing as the transition saturates.
A spontaneous-emission event after steady state prepares the mixed state:

ρcond(0) =
2

3
|0,−〉〈0,−|+ 1

3
|ψsuper〉〈ψsuper|, (47)

with

|ψsuper〉 =
1√
2

(|ξ1〉+ |ξ2〉) = |1,−〉 . (48)

The intensity correlation function is

g (2)(τ) =
tr
{

[eLτρcond]σ+σ−
}

〈σ+σ−〉ss
= 1 + e−γ|τ |[c1 cos(2Ωτ) + c2 sin(2Ω|τ |)

+ c3e
−γ|τ | + c4 cos(ντ)], where ci = fi (p3), p3 = Ω2/(4Ω2 + γ2).

(49)
For fluorescence, g (2)(τ = 0) = 0 always. For the transmitted field,
g (2)
→ (τ = 0) ≈ 1 + 3γ2/(25Ω2) when Ω2 � γ2 – extreme photon

bunching10.
10S. S. Shamailov et al., Opt. Commun. 283 (2010).
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Monitoring coherence in photon blockade III.

First and second-order coherence of fluorescence 11

4 2 0 2 4
( d)/g

10 1

100

101

102

S(
) E 3

E 2

E 3
E 1

E 1
E 0

E 2
E 0

2-PB: d/ = 20

4 2 0 2 4
( d)/g

10 1

100

101

102

2-PB: d/ = 60

0.1 0.0

100

102
E3 E0

-2 -1 0 1 2

0

0.5

1

1.5

g
(2

) (
)

(b)

11Th. K. M. and C. Lledó, Optics Communications 486 (2021).
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Monitoring coherence in photon blockade IV.

Second-order coherence and the Wigner function 12

Transient and steady-state Wigner functions evince bimodality.

Wss(α, α∗) =
2

π
e−2|α|2

{
4p3|α|4 + 2p3|α|2 + (1− 3p3)

+ i2
√
p3(1− 4p3) [α2 − (α∗)2]

}
.

(50)

12Th. K. M., Phys. Rev. A 104 (2021). 30 / 38



Monitoring coherence in photon blockade V.

Resolving the conditional mixed state following spontaneous emission:
ρcond(0) = 2

3 |0,−〉〈0,−|+ 1
3 |1,−〉〈1,−|. The 1/3 of realizations bring in

prominently the quantum beat while the remaining 2/3 evince
semiclassical oscillations. The conditional ratio of forwards to sideways
emitted flux is modulated by the qunatum beat in bundles of peaks.

The transition saturates as we move from (a) to (c), and steady-state
bimodality disappears. 31 / 38



The erasure of photon blockade

The two interactions (JC coupling and coupling to the coherent external
drive) on equal footing: |εd | ∼ g/2.

Resonances are ‘erased’13 for larger values of |εd |/g or decreasing nsc.

13Th. K. M, Phys. Rev. A 100 (2019).
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Tracking a first-order dissipative phase transition

The two interactions on equal footing: |εd | ∼ g/2.

Now the “thermodynamic limit” restores a mean-field nonlinearity
through complex-amplitude bistability.

For strong excitation, |αss|2 = (|εd | ± g/2)2/(∆ω)2. The “−”
branch is unstable, heralding symmetry breaking at threshold.

Compare with the weak-coupling limit of absorptive optical
bistability, where nwc = γ2/(8g2).
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Two-level atom observables before symmetry breaking

Inversion and polarization fluctuations close to resonant excitation:

The two states have quasi-Poissonian statistics as shown by 〈σz(t)〉.
The two distributions approach the equator of the Bloch sphere as
ωd → ωA(= ωc) and |εd | → g/2.
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Symmetry breaking on resonance

Spontaneous symmetry breaking for the two coupled degrees of freedom
with growing nsc (for ∆ω = 0)14.

Quantum fluctuations stabilize the mean-field states as “attractors”. A
state that fluctuates between two complex-conjugate amplitudes heralds
the mean-field bifurcation.

14Th. K. M, Phys. Rev. A 100 (2019).
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Bringing everything together in the phase portrait

Critical point (white spot) of a second-order quantum dissipative
phase transition in zero dimensions: γ2/(8g2)→ 0.

Breakdown by means of amplitude and phase bimodality 15:

Coexistent states are revealed by the quantity 1−|h1−h2|/(h1 +h2),
where h1,2 are the peaks heights in the Q function.

15H. J. Carmichael, Phys. Rev. X 5, 2015 (Fig. 2)
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Concluding remarks

Quantum systems of light-matter interaction out of equilibrium are
subject either to a weak or a strong-coupling “thermodynamic limit”.
In the strong-coupling regime, the fluctuations have nothing in
common with those envisaged by a system size expansion, where
the outcomes of single quantum events are assumed microscopic,
with only their cumulative effect appearing as a diffusion process at
the microscopic level.
On resonance, photon blockade breaks down by means of a
dissipative first-order quantum phase transition where bistability sets
in already for very low excitation. Strong-coupling limit with
nsc = [g/(2κ)]2 at which fluctuations don’t vanish.
Photon correlations in mutltiphoton resonances reveal the distinct√
n Jaynes-Cummings spectrum through a quantum beat (or a

superposition of quantum beats), also leaving an imprint on single
trajectories.
The limit of “zero system size” (nwc = [γ/(2

√
2g)]2 → 0) on

resonance accounts for new (semiclassical) stationary states
predicting a threshold organizing a second-order dissipative
quantum phase transition. Coherence is ’transferred’ to a
monitoring emitter in a cascaded systems setup.
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Thank you for your attention!
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