

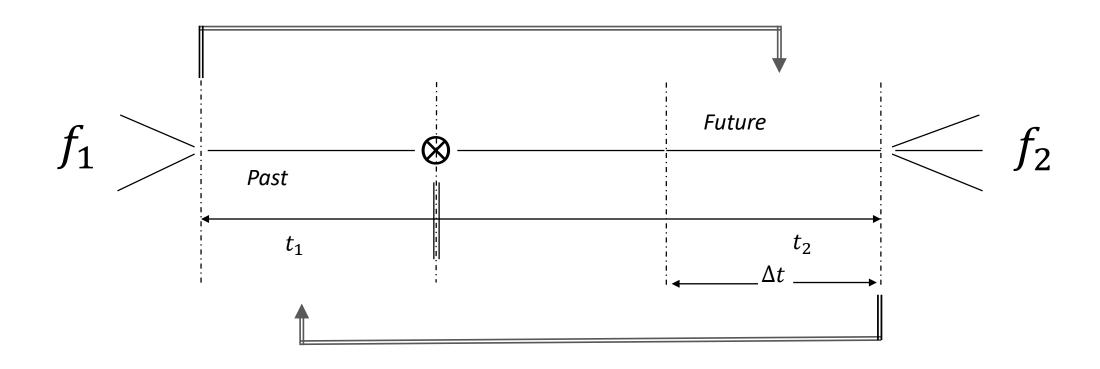
QMP SEMINAR

13 December 2023

TIME vs. REALITY:

ENTANGLEMENT IN PARTICLE PHYSICS

José Bernalén IFIC-Univ. Valencia


Jose.bernabeu@uv.es

What is THE NOVELTY beyond Entanglement in Quantum Optics?

- $ightharpoonup \Delta$ F = 2 Mixing $(K^0 \overline{K^0}, B^0 \overline{B^0}, ...)$
- CP Violation Mixing Decay InterferenceDecay
- Non-Trivial Time Evolution: Anton Zeilinger
 Production → Entangled → Interference → Decoherence
 with rich distinct information from one or double decay on the three regimes
- > States with definite Mass and Lifetime $\lambda = M i\Gamma/2$, $\Delta M \neq 0$, $\Delta \Gamma \neq 0$ are those with **definite Time Evolution**.
- \triangleright Existence of B-Factory and Φ -Factory Facilities

- I. TIME HISTORY of Entangled System: from Production to its fate
- TIME REVERSAL in Δt for unstable particles

- II. POST-TAG of Past-decayed state: Entanglement times t₁
- K_s TAG

NOVEL EFFECTS

- (1) As a **Tool** for the BYPASS of (otherwise) NO-GO THEOREMS
 - 1.1 The Conundrum of **Time Reversal and CPT** for Unstable Particles
 - 1.2 What is a K_s experimentally?
- (2) The discovery of new quantum phenomena:

SURVIVING CORRELATION - IN - TIME FROM FUTURE TO PAST

It comes definite from measurement in the future t_2 , when the system is no-longer entangled, to the state –depending on t_2 (!?) - of the partner in the past t_1 , before its decay when it was entangled and "unspeakable".

It is asymmetric compared to the correlation from past to future.

If EPR \rightarrow Spooky Action at a Distance \rightarrow Bell Theorem \rightarrow end of Hidden Variables and proof of "Lack of Local Realism" \rightarrow Quantum Information,

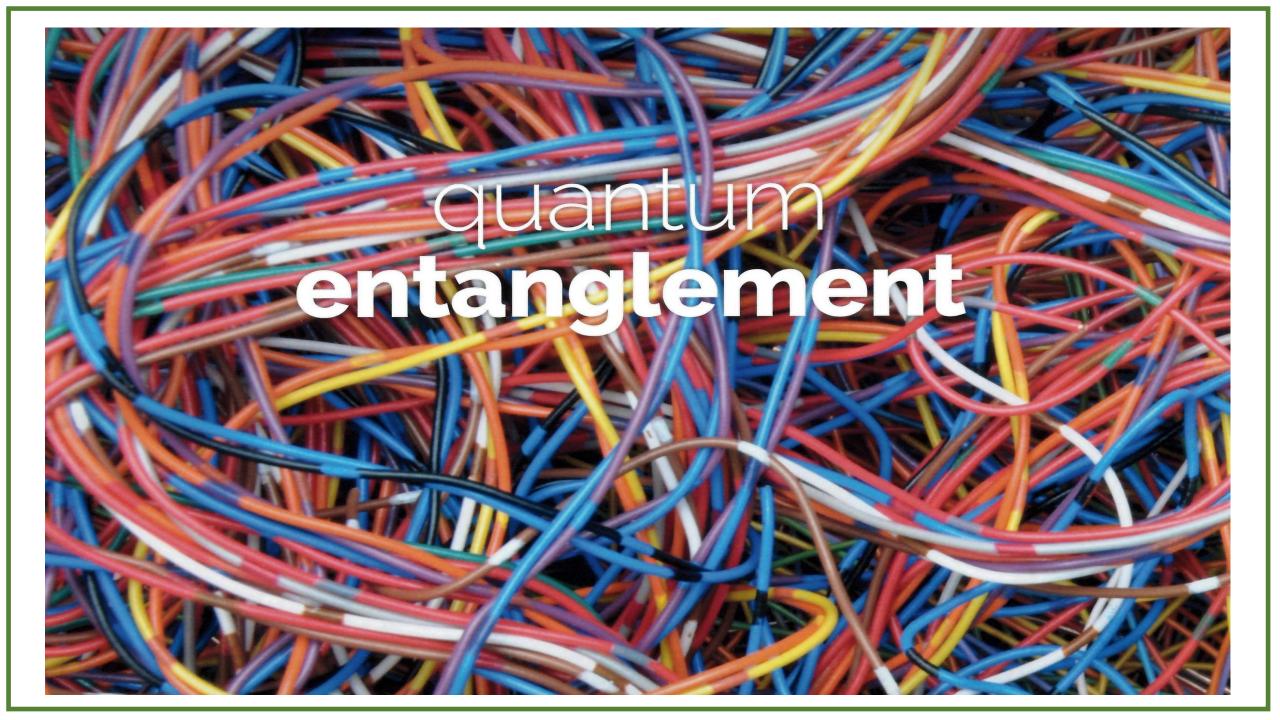
then \rightarrow What about the novel correlation - in - time ? \rightarrow Spooky Action to the Past \rightarrow ???

OUTLINE

- > Entangled two-body C=- neutral meson system
- > Time Evolution and "Survival" probalility: the Total Width
- \succ The state $|K_{\rightarrow f}\rangle$ not decaying to f. **The K_L tag**
- ➤ The Conundrum of **Time Reversal** —and CPT- **for Unstable Particles**: NO-GO and its Bypass (in 1999): **The Conceptual Basis**
- > Experimental TR Asymmetries for B (in 2012) and K (in 2022) systems
- From the observation of second decay f_2 at t_2 to the partner state before its decay at t_1 . SURPRISE of the "initial" state depending on t_2 .
- > The K_s tag
- > Conclusion: An epistemological open question

ENTANGLED C = - neutral meson system

ightharpoonup Actually existing at DA ϕ NE with $\Phi \to K^0 \, \overline{K}{}^0$,


at BABAR and BELLE with $\Upsilon(4S) \longrightarrow B^0 \, \bar{B}^0$

$$C\mathcal{P} = + \Rightarrow |i(t=0)\rangle = \frac{1}{\sqrt{2}}\{|K^0\rangle|\overline{K}^0\rangle - |\overline{K}^0\rangle|K^0\rangle\}$$

with particle 1 decaying at t₁, particle 2 decaying at t₂>t₁

- Fiven With Mixing, |i>(t>) does not generate any $K^0\>K^0$, nor $\overline{K}^0\>\overline{K}^0$, due to antisymetry (not valid for symmetric C=+!)
- ➤ Time Evolution → definite in terms of non-orthogonal eigenstates of the non-normal Hamiltonian

$$\begin{aligned} \left| K_{S,L} \right\rangle \alpha \left[\left(1 + \epsilon_{S,L} \right) \left| K^0 \right\rangle \right. &\pm \left(1 - \epsilon_{S,L} \right) \left| \overline{K}^0 \right\rangle \right], \\ \mathscr{L} \mathcal{F} \longrightarrow \left\langle K_S \middle| K_L \right\rangle \right. &\simeq \epsilon_L + \epsilon_S^*, \\ \epsilon &= (\epsilon_S + \epsilon_L)/2 \longrightarrow \mathcal{X}, \qquad \delta = (\epsilon_S - \epsilon_L)/2 \longrightarrow \mathscr{CPT} \end{aligned}$$

TIME EVOLUTION $|i(t)\rangle$

- > The entangled state is **non-separable** in parts:
- (i) "which is which" is not defined;
- (ii) the two parts are not definite: any two lineraly independent combinations. Only the state $|i\rangle$ is definite: the state of each part is "unspeakable".
- > The time evolution, written as

$$|i(t=0)\rangle = N/\sqrt{2} \{|K_S\rangle |K_L\rangle - |K_L\rangle |K_S\rangle \}$$
, $|N|^2 = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} |i(t=0)\rangle$

The Survival Probability $P(t_1) = \|i(t = t_1)\|^2 = e^{-\Gamma t_1}$, Total Width $\Gamma = \Gamma_S + \Gamma_L$

- $|i(t)\rangle$ is unaltered, it reamains the same: NO INTEREST BEFORE THE FIRST DECAY. The considered observable has been the **Double Decay Rate Intensity** I (f_1 , f_2 ; Δt)!
- > Careful! P(t₁) iff nothing else is observed in the future
- > How to inquire in the "unspeakable" regime?

FIRST DECAY f₁ → TAGGING AND FILTERING

>Any state can decay to f, but that with zero probability

$$|K_{\to f}\rangle = N_{\to f}[K_L\rangle - \eta_f |K_S\rangle]; \qquad \eta_f = \frac{\langle f|T|K_L\rangle}{\langle f|T|K_S\rangle}$$

 \triangleright If you observe the first decay to f_1 at t_1 , proyecting $|i(t=t_1)\rangle$ to f_1 , the **living partner** (2) corresponds to the pure state

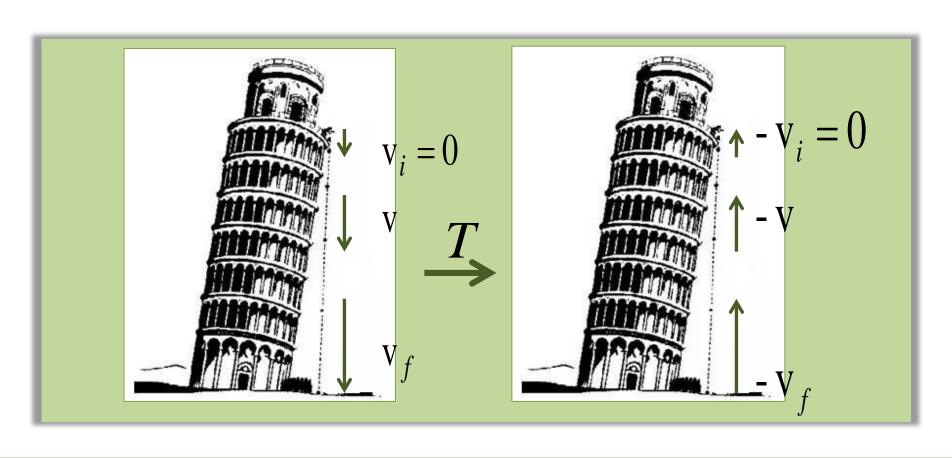
$$\left|K^{(2)}(t=t_1)\right\rangle = \left|K_{\leftrightarrow f_1}\right\rangle \iff TAG\ of\ (2)$$

- This fact was always recognized for "flavour tag": First decay to $| \cdot (| \cdot |) \rightarrow$ Partner tagged to $\overline{K}^0(K^0)$. It is, however, valid in general as stated!
- What for the decayed state (1)? The state before decay was undefined. Written as a superposition of $|K_{\rightarrow f}\rangle$ and its orthogonal $|K_{\rightarrow f}^{\perp}\rangle$ $Decay \ to \ f_1 \implies |K_{\rightarrow f1}^{\perp}\rangle \quad FILTERED \ for \ (1)$

Decay Rate given by the **decay probability** to f_1 of $|K_{++f_1}^{\perp}\rangle \equiv$ **FILTERING IDENTITY**

Δt HISTORY OF THE LIVING PARTNER

- The subsequent Δt evolution of particle (2) and its decay to f_2 are definite from the **pre**pared tagged state.
- For $\Delta t \le few \, \tau_s$, one has an interference patern, because no decay channel due to CP Violation projects either K_s or K_L !
- \succ For long enough Δt , one has **Decoherence** $K_L tag \Leftrightarrow |\eta_1|e^{-\Delta\Gamma\Delta t/2} \ll 1$ with a quantitative purity of the K_L –state
- \triangleright The observable is the **Double Decay Rate, the Intensity** I(f₁, f₂; Δ t). Tagging of the living partner at t₁ and Filtering of its state in its Decay to f₂ at t₂


allows to talk of Δt Transition Probability $P\left(K_{\nrightarrow f1} \stackrel{\Delta t}{\rightarrow} K_{\nrightarrow f2}^{\perp}\right)$

"independent of the decay" and connected to I(f_1 , f_2 ; Δt).

WHAT IS "TIME REVERSAL"?

➤ A symmetry transformation, T, that changes one physical system into another with an inverted sense of time evolution is called Time Reversal: Reversal-in-Time.

In classical mechanics, this corresponds to substituting for each trajectory $\vec{r} = \vec{r} (\Delta t)$ the trajectory $\vec{r} = \vec{r} (-\Delta t)$ moving along the trajectory with the opposite velocity at each point.

TIME REVERSAL IN QUANTUM MECHANICS

➤In Quantum Mechanics, there is an operator U_{CP} implementing the CP-symmetry acting on the states of the physical system, such that

$$U_{C} Q U_{C}^{+} = -Q, U_{P} \vec{r} U_{P}^{+} = -\vec{r}, U_{P} \vec{p} U_{P}^{+} = -\vec{p}, U_{P} \vec{s} U_{P}^{+} = \vec{s}$$

The operator U_{CP} is an observable with Conservation Laws: $K_L \rightarrow \pi \pi$

- The operator U_T implementing T-symmetry is such that in transitions $U_T \vec{r} U_T^+ = \vec{r}$, $U_T \vec{p} U_T^+ = -\vec{p}$, $U_T \vec{s} U_T^+ = -\vec{s}$
- ➤ A DIRECT ASYMMETRY: Comparison of Transition Probabilities between a Reference process and its T-transformed in a single experiment; NOT a Fit of a parameter describing TR in a given Theoretical Framework.

Q M commutator $[r_j, p_k] = i\hbar \delta_{jk} I$ the operator $\mathbf{U_T}$ must be

ANTI-UNITARY: UNITARY- for conserving probabilities, ANTI- for complex conjugation

ANTIUNITARITY introduces many intriguing subtleties:

$$S_{i \to f} \xrightarrow{T} S_{U_T f \to U_T i}$$

T - Violation means Asymmetry under Interchange in → out states

ightharpoonup Similarly for ANTIUNITARY CPT which needs not only in ightharpoonup out, but also i,f
ightharpoonup f,i , in transitions.

THE CONCEPTUAL BASIS FOR A DIRECT TRV EFFECT

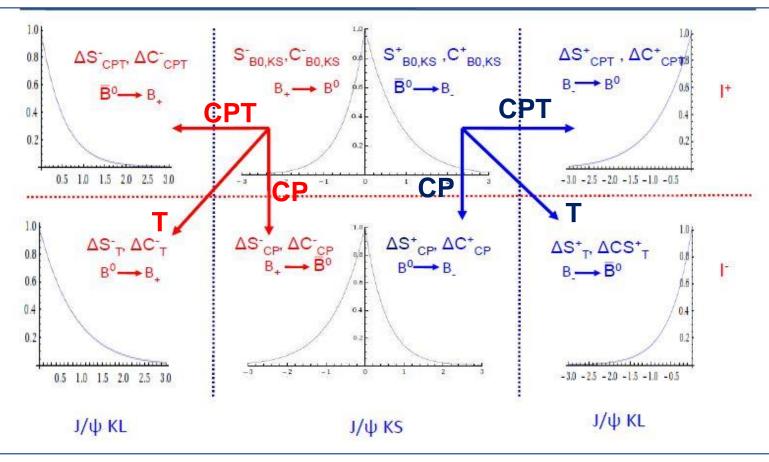
• Guido Drexlin, Valery Rubakov, Lincoln Wolfenstein

- independently -

"The main difficulty was not in the experiment itself, but in knowing WHAT YOU HAD TO MEASURE"

CONCEPTUAL BASIS FOR BYPASSING NO-GO

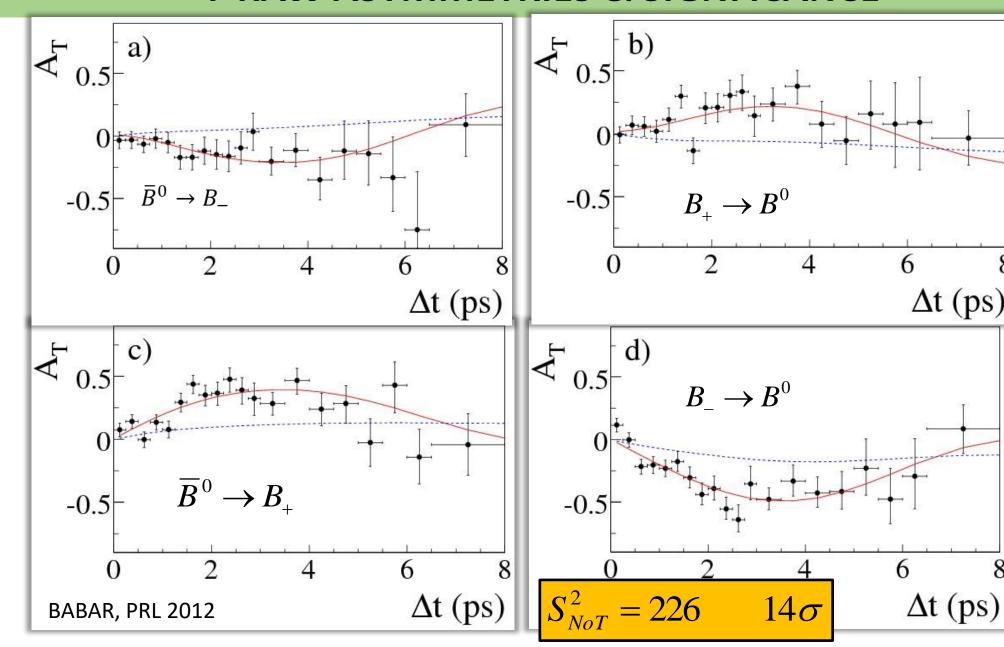
- ightharpoonup Neutral Mesons $K^0 \overline{K}^0$, $B^0 \overline{B}^0$ are UNSTABLE and the Decay is irreversible.
- T and CPT, ANTIUNITARITY!, need however the exchange of initial and final states →NO-GO.
 L. Wolfenstein, PRL 1999: "The T-reverse of a decaying state is not a physical state".
- ➤ **BYPASS** M. C. Banuls, J. B., PLB 1999, NPB 2000 → Do not include the Decay Products in your Asymmetry, write it in terms of Meson States and the Decay should not be an essential ingredient for getting a non-vanishing value:
- 1) Use the Decay as a **Quantum Filtering Measurement** of the Meson State ONLY: Orthogonal to Non-Decay State.
- 2) Quantum ENTANGLEMENT: Quantum Information from the First Decay to the (still alive) Partner for the Preparation of the initial Meson State: Non-Decay State if Antisymmetric entangled system.
- 3) The test of Symmetries is made in the Time Evolution of the Partner from the first to the second decay.
 - L. Wolfenstein, IJMP E 1999: "It appears to be a true TRV Effect"

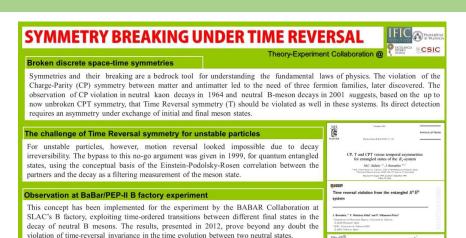

WHAT IS T-TRANSFORMATION EXPERIMENTALLY?

The problem is in the preparation and filtering of the appropriate initial and final meson states

J.B., Martinez Vidal, Villanueva, JHEP 2012, COVER PAGE RMP vol. 87 (2015) for a T-test in transitions Entangled state Entangled state projects projects Y(4S) Y(4S) -J/ψ J/ψ B_{-} - Tagging \overline{B}° – Tagging It is NOT K_s the exchange $t_1 \rightleftharpoons t_2$ projects projects Decays \overline{B}^{0} B_{-}

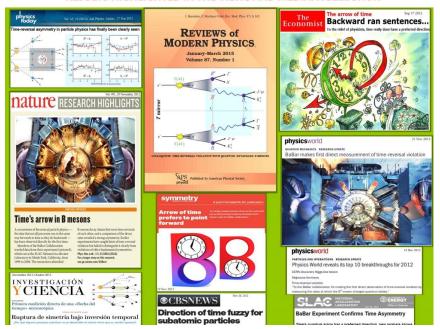
ΔS[±], ΔC[±] ASYMMETRY PARAMETERS


$$I_{i}(\Delta t) \sim e^{-\Gamma \Delta t} \left\{ C_{i} \cos(\Delta m \Delta t) + S_{i} \sin(\Delta m \Delta t) + C'_{i} \cosh(\Delta \Gamma \Delta t) + S'_{i} \sinh(\Delta \Gamma \Delta t) \right\}$$


→ The Processes (f₁,f₂) and (f₂,f₁) exchanging the Time Ordering of the Decays (red → blue) are NOT CONNECTED BY A SYMMETRY OPERATION!

T-RAW ASYMMETRIES & SIGNFICANCE

 Δt (ps)


SEPARATE T AND CP VIOLATION EFFECTS

RESULTS HIGHLIGHTED IN THE VIEWS AND MEDIA: A SELECTION

2012) PHYSICAL REVIEW LETTERS

Observation of Time-Reversal Violation in the B⁰ Meson System

Using BABAR data PRL 2012

Independent direct T and CP Asymmetries:

JB, Botella, Nebot, JHEP 2016

$$\Delta S_C^T = -0.687 \pm 0.020$$
,

$$\Delta S_C^{CP} = -0.687 \pm 0.021$$

Impressive separate evidence of TRV, CPV

"Intriguing" 2 σ - effect for CPTV

$$\Delta C_c^{CPT} = -\Delta C_h^{CPT} = (2.7 \pm 1.5) \cdot 10^{-2}$$

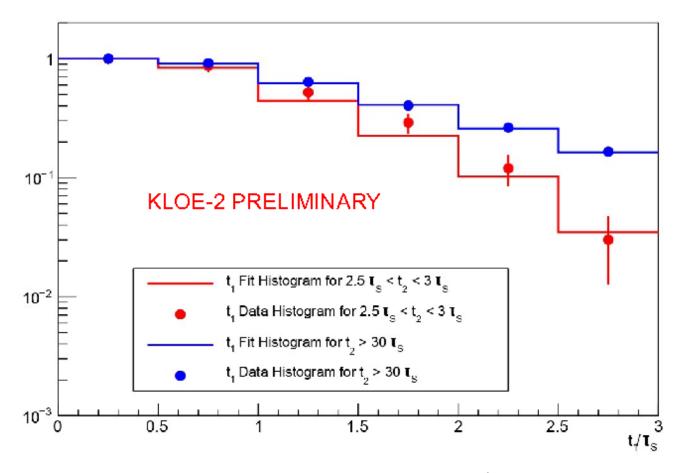
POST-TAG TO THE PAST DECAYED STATE

- \gt In the entangled $|i(t)\rangle$ state, there is no privilege of one of the decay times \gt Study the implications of observing the second decay to f_2 at time t_2
- The partner $K^{(1)}(t=t_2)$ is tagged

$$\left|K^{(1)}(t=t_2)\right\rangle = N_1\{\eta_2|K_S\rangle - |K_L\rangle\}$$

which has not been observed! But it decayed at time t₁<t₂

Fixing the observation (η_2, t_2) and evolving t_1 from t_1 =0 to t_1 = t_2 , its past state


had to be

$$|K^{(1)}(t=0)\rangle = N[\eta_2 e^{-i\lambda_L t_2} |K_S\rangle - e^{-i\lambda_S t_2} |K_L\rangle]$$

DOUBLE SURPRISE! Not only there is a post-tag of the initial state, it depends on when the second decay will be observed.

OBSERVATION OF THE POST-TAGGED PAST-DECAYED STATE DEPENDING ON t₂

➤ Measure the first-decay time t_1 - distribution for $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$ for two identical observations of the future decay at distinct fixed t_2

A. Di Domenico on behalf of KLOE-2 Collaboration 2023/Phys. Conf. Serv2446, 012027

THE K_S-TAG

Decoherence is reached for large Δt before the observation of the second decay

$$e^{-\Delta\Gamma\Delta t/2}/|\eta_2|\ll 1$$

leading to a pure Ks-beam

- Most rewarding: $-\mathcal{L}^p$ and $\langle K_L|K_S\rangle \neq 0 \rightarrow \text{No decay channel able to tag either K_I or K_S$
- ➤ After 58 years of CPV: **this POST-TAG condition in times is the only way to study rare K_s-decays.** Compare with 60 year history of K₁ decays!
- \triangleright Example: Difference of charge Asymmetries $A_1 A_5 \rightarrow$ Direct test of CPT!

CONCLUSION

- \succ Entanglement in particle anti-particle system $M^0 \overline{M}^0$
- >NOVEL EFFECTS Tools for Particle Physics
 Quantum Phenomena
- ➤ POST-TAG of the past-decayed state depending on what and when measurement on the partner in the future.
- ➤ In Classical and Quantum Physics, Time is a parameter to describe the evolving definite reality, not an observable.
- ➤ With the surviving correlation-in-time, Einstein would claim: "A Spooky Action to the Past"

NO (UNKNOWN) CAUSAL EFFECT

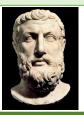
- CAUSAL INFLUENCE says that the cause must precede the effect according to ALL inertial observers, so that for the Post-Tag effect in the entangled K-mesons system –in which there are both time-like and space- like intervals,
- **If the Interval is time-like**, future is future for all observers → the future to past "influence" is NOT CAUSAL.
- If the Interval is space-like, there could be observers exhanging future and past, BUT the two events could only connect with a signal velocity higher than the speed of light → this "influence" is NOT CAUSAL.
- ➤ Then, independent of the space-time interval between the future observation in CM of the second decay and the past state of the partner, "the Post-Tag correlation in time" effect CANNOT BE A CAUSAL INFLUENCE.
- ➤ Whereas the EPR correlation between observables NEEDS a space-like interval to ensure no causal influence, the Post-Tag effect cannot be a causal influence for ALL cases → no loopholes. This is an additional argument, besides the fact that TIME IS NOT AN OBSERVABLE, to skate that the Post-Tag effect goes beyond the EPR correlation.

FOR PHILOSOPHERS EPISTEMOLOGY

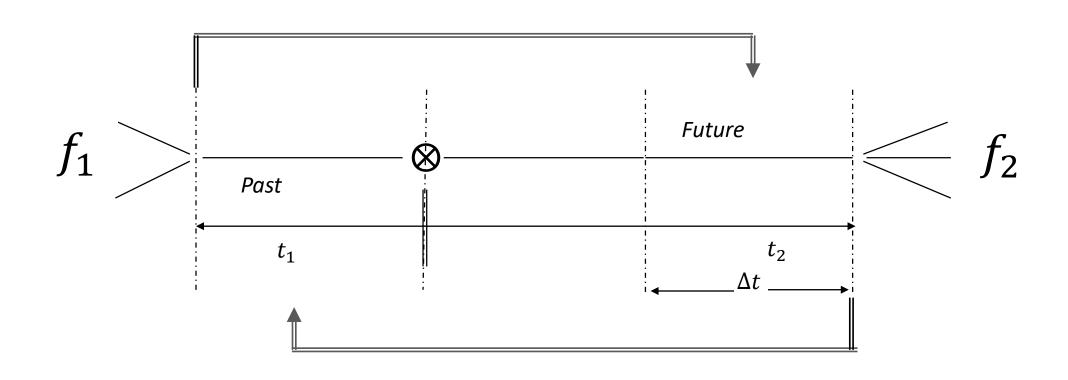
Physics \rightarrow QM correctly describes the **behaviour of nature when it is observed**

Scientific Methodology

Philosophy > What QM says about nature's reality?


- Spooky Action at a Distance
- EPR Correlation-Bell Theorem
- Lack of Local Realism

- Spooky Action to the Past
- Surviving Correlation-in-time
- Lack of Instant Realism


(x,t) is not a definite, separate event \longrightarrow Role of time in QM?

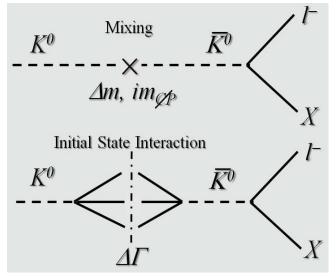
TIME versus REALITY
Heraclitus vs. Parmenides

THANK YOU VERY MUCH FOR YOUR ATTENTION

BACK-UP

CAN TR BE TESTED IN UNSTABLE SYSTEMS?

THE FACTS FOR 4σ Kabir Asymmetry at CPLEAR (1998)


Taking as Reference $K^0 \to \overline{K}^0$ and calling (X,Y) the observed decays at times t_1 and t_2 , with $\Delta t \equiv t_2 - t_1 > 0$, the CP, T and CPT transformed transitions are

Transition	$K^0 \to \overline{K}^0$	$\overline{K}^0 \to K^0$	$\overline{K}^0 \to K^0$	$K^0 \to \overline{K}^0$	$K^0 \to \overline{K}^0$
(X,Y)	(l ⁻ , l ⁻)	(l+, l+)	(l+, l+)	(l ⁻ , l ⁻)	(l ⁻ , l ⁻)
Transformation	Reference	СР	T	CPT	Δt

- \longrightarrow No way to separate T and CP if T were defined. CPT and Δt are the identity!
- ➤ T-operator is not defined for **decaying** states: its time reverse is not a physical state.
- The Kabir asymmetry NEEDS the interference of CP mixing with the "initial state interaction" to generate the effect, directly proportional to $\Delta\Gamma$.

The decay plays an essential role

The time evolutions of $K^0 o \overline{K}^0$ and $\overline{K}^0 o K^0$ are equal, the asymmetry is time independent.

- \triangleright In the WW approach, the entire effect comes from the overlap of non-orthogonal K_L , K_S states. If the **stationary** states were orthogonal \Longrightarrow no asymmetry.
- L. Wolfenstein: "it is not as direct a test of TRV as one might like".